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1. INTRODUCTION 

One of the main area in the study of fixed point is metric fixed 
point theory, where the major and classical result was given 
prove by Banach [1], known as the Banach contraction 
principle, states that if (X,d) is a compete metric space and 
: →   is a contraction mapping i.e. 

, ,  for all , 	 ∈ , where  is non negative 
number s.t. 1. then T has a unique fixed point.  

In 2011, Azam, A & fisher, B & Khan M. [2] introduced the 
complex valued metric space & Verma & Pathak [3]:,solanki 
et.al.[5], sintunavarat, cho., Kumam [4]: Chandok, S. [6,7,10]: 
Jungek, LG [11]; Sessa S [8]; Wintunavarat W [13]; Fouz kard 
F [12]; Nashin Inded Hashn [9] and many others. In this paper, 
we prove some common fixed point theorems for two pair of 
weakly mapping satisfy a contractive condition of rational 
type. 

Theorem 1.1 let T be a continuous self map defined on a 
complete metric space (X, d). Suppose that T satisfies the 
following contractive condition. 

,
, , 	 ,

,
, ,				∀	 , ∈ ,

, ……1.1. 	 where , ∈ 0, 1 , . .		 1. Then T has 
a unique fixed point 

Also, in 1975 Dass & Gupta prove that every continues self 
map on the metric space (X, d) which satisfies the 

        ,
, 	 ,

,
, ,				∀	 , ∈

, ……1.1.  where  

        , ∈ 0, 1 , . .		 1. Then T has a unique fixed 
point 

2. PRELIMINARIES 

Definition 2.1 [2] let c be the set of complex number and let 
z1, z2, ∈ C  as follows: 

 	 , 	 … .2.1.  

 Consequently   if one of the following condition is 
satisfied  

a) 	 	 , 	  

b) 	 	 , 	  

c) 	 , 	  

d) 	 , 	  

In particular ≨  if Z1  Z2 and one of (a), (b),(c) is 
satisfies and if Z1 	   

then only (c) is satisfied that  

 1. , 	 ∈ 	 	 	 	 ⇒ 	 ∀	 ∈  

 2. 0 ≰ 	⇒  

 3.						 	 	 ⇒  

Definition 2.2   Let X be a non-empty set, & C be the set at 
complex numbers suppose that the mapping d: →   
satisfies the following conditions  

 (i)  0 , ∀	 , 	 ∈ 	&	 	 ,
0		 	  

 (ii)						 , , ∀	 , 	 ∈  

 (iii) , , 	 , ∀	 , 	 ∈  

Then d is called a complex valued metric on X and (X, d) is 
called a complex valued metric space.  
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Definition 2.3 Let (X, d) be a complex valued metric space 
and let   be a sequence in X. Then   converge to  iff    

, → 0
as → ∞ 

Definition 2.4 Let (X, d) be a complex valued metric space 
and let be a sequence in X. Then   is a cauchy 
sequence iff 

 
, → 0

    as → ∞ where ∈ . 

 

3. MAIN RESULT :  

Theorem 3.1 Let (X, d) be a complete complex valued metric 
space and let the mapping , ∶ →   satisfies the 
condition. 

, , 	 	
, 	 , , ,

	 ,
, ,

,
																																															 ,

,                ............3.1.1 

for all , , ∈ 	 s. t. , , 0 where , , , 	are 
non negative reals with 2 2 1 or d(Fx, Gy) = 
0 If  , 0. Then   F & G  have a unique common fixed 
points.  

Proof:   Let     be on a arbitrary point in X 
and define  ;  

	 	 0, 1, 2,3…….	Then  

, ,  

	 ,

	 	

, 	 , ,
,

	 ,
, ,

	 , 	
	 , ,  

,
,

	 	
, 	 , ,

	 ,
, ,

	 , 	

	 , ,   

, 	 , ,
,    

, ,  

, 	 ,    

 

So that  

,

	
1

,
 

As by triangle inequality  

, ,

,
  

similarly :  

,	 ,   

	
,

	
, 	 , , ,

	 ,
, ,

	 , 	
	 ,

,    

,

	
, 	 , , ,

	 ,
, ,

	 , 	
	 ,

,   

, ,
,  

, 	 ,   

 so that  , 	 ,  

As by triangle inequality  

, ,

,
   

so that  , 	 ,  where   

s =  	 1  

, , ⋯

,
 so that  

for any  m > n 

As by triangle inequality   
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,

, ,

, ⋯ ,
   

 

⋯ ,  

                         ,   

 hence. 
, ,

  

 as  m, n → ∞  

This implies that  is a cauchy sequence in X. Since X is 
complete, there exists some ∈  such that →  as → ∞.  

suppose on the contrary that   ,so that 
, 0.  

Now , 	 	 , 	 ,  

, 	 ,   

, ,

	 	
	, 	 	, , ,

	 	,
	, ,

	 , 	
	 , ,   

, ,

	 	
	 	, , ,

	 	,

,

	 , 	

	 , ,   

so that  

, ,

,

	 	
	 	, , 	 ,

	 	,

,

	 , 	
	 ,

,
  

which on mapping → ∞  

Therefore     
, 0

 

which is contradiction so that   

similarly we show that   

Thus implies that  is fixed point  

Uniqueness:  

Let 	 	  be another common fixed point of 	&	 . Then  

, 	 	 ,

, 	 	
, 	 , , ,

	 ,
, ,
	 , 	

	 , ,  

 	 , 	 , 	 	 	 	 , 	 ,   

, 2 	 ,  

, 	 ,
 

 where 	 2 1 so ,  which proves the 
uniqueness of common fixed point.   

4. CONCLUSION 

In this paper, we have established common fixed point result 
for Jaggi Type & Chatterjee Type contractive mapping in the 
context of complex valued metric space. 
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