Common Fixed Point Theorem under Complex Valued Metric Space

Manoj Solanki¹ and Ramakant Bhardwaj²

¹Department of Mathematics, Sadhu Vaswani College(Auto.) Sant Hirdaram Nagar, Bhopal (M.P.) ²Department of Mathematics, TIT, Bhopal (M.P.) E-mail: ¹solomanoj14@gmail.com

Abstract—In this paper, I prove the common fixed point theorem for a pair of mappings Satisfying rational type contractive conditions in frame work of complex valued metric Space. The prove results generalize and extended some of the know result in the literature.

Keywords:- contractive type mapping, complex valued metric space, common fixed point Rational contraction

AMS Classification:- 54H 25, 47 H 10

1. INTRODUCTION

One of the main area in the study of fixed point is metric fixed point theory, where the major and classical result was given prove by Banach [1], known as the Banach contraction principle, states that if (X,d) is a compete metric space and $T: X \rightarrow X$ is a contraction mapping i.e.

 $d(x, y) \le \alpha d(x, y)$ for all $x, y \in X$, where α is non negative number s.t. $\alpha < 1$. then T has a unique fixed point.

In 2011, Azam, A & fisher, B & Khan M. [2] introduced the complex valued metric space & Verma & Pathak [3]:,solanki et.al.[5], sintunavarat, cho., Kumam [4]: Chandok, S. [6,7,10]: Jungek, LG [11]; Sessa S [8]; Wintunavarat W [13]; Fouz kard F [12]; Nashin Inded Hashn [9] and many others. In this paper, we prove some common fixed point theorems for two pair of weakly mapping satisfy a contractive condition of rational type.

Theorem 1.1 let T be a continuous self map defined on a complete metric space (X, d). Suppose that T satisfies the following contractive condition.

 $d(Tx,Ty) \le \alpha \frac{d(y,Ty),d(x,Tx)}{d(x,y)} + \beta d(x,y), \quad \forall x,y \in X, x \neq y, \dots \dots 1.1. a \text{ where } , \beta \in [0,1), s.t. \alpha + \beta < 1. \text{ Then T has a unique fixed point}$

Also, in 1975 Dass & Gupta prove that every continues self map on the metric space (X, d) which satisfies the

$$d(Tx, Ty) \le \alpha \frac{d(y, Ty)[1+d(x, Tx)]}{1+d(x, y)} + \beta d(x, y), \quad \forall x, y \in X, \dots, 1.1. b \text{ where}$$

 $\alpha, \beta \in [0, 1), s.t. \alpha + \beta < 1$. Then T has a unique fixed point

2. PRELIMINARIES

Definition 2.1 [2] let c be the set of complex number and let $z_1, z_2, \in C$ as follows:

$$Z_1 \leq Z_2 \Leftrightarrow Re(Z_1) \leq Re(Z_2), Im(Z_1) \leq Im(Z_2) \dots 2.1.a$$

Consequently $Z_1 \leq Z_2$ if one of the following condition is satisfied

a)
$$Re(Z_1) = Re(Z_2), Im(Z_1) < Im(Z_2)$$

b) $Re(Z_1) < Re(Z_2), Im(Z_1) = Im(Z_2)$
c) $Re(Z_1) < Re(Z_2), Im(Z_1) < Im(Z_2)$
d) $Re(Z_1) = Re(Z_2), Im(Z_1) = Im(Z_2)$

In particular $Z_1 \not\subseteq Z_2$ if $Z_1 \neq Z_2$ and one of (a), (b),(c) is satisfies and if $Z_1 < Z_2$

then only (c) is satisfied that

1. $a, b \in R \text{ and } a \leq b \Rightarrow aZ \leq bZ \forall Z \in C$ 2. $0 \leq Z_1 \leq Z_2 \Rightarrow |Z_1| < |Z_2|$ 3. $Z_1 \leq Z_2 \text{ and } Z_2 < Z_3 \Rightarrow Z_1 < Z_3$

Definition 2.2 Let X be a non-empty set, & C be the set at complex numbers suppose that the mapping d: $X \times X \rightarrow C$ satisfies the following conditions

(i)
$$0 \le d(x, y) \forall x, y \in X \& d(x, y) =$$

0 *iff* $x = y$
(ii) $d(x, y) = d(y, x) \forall x, y \in X$
(iii) $d(x, y) \le d(x, z) + d(z, y) \forall x, y \in X$

Then d is called a complex valued metric on X and (X, d) is called a complex valued metric space.

Definition 2.3 Let (X, d) be a complex valued metric space and let $\{x_n\}$ be a sequence in X. Then $\{x_n\}$ converge to x iff

$$\begin{vmatrix} d(x_n,x) \end{vmatrix} \to 0$$
 as $n \to \infty$

Definition 2.4 Let (X, d) be a complex valued metric space and let $\{x_n\}$ be a sequence in X. Then $\{x_n\}$ is a cauchy sequence iff

$$d(x_n, x_{n+m}) \Big| \to 0$$
 as $n \to \infty$ where $m \in N$.

3. MAIN RESULT :

Theorem 3.1 Let (X, d) be a complete complex valued metric space and let the mapping $F, G : X \to X$ satisfies the condition.

$$d(Fx, Gy) \le \alpha d(x, y) + \beta \frac{d(x, Fx)d(x, Gy) + d(y, Gy)d(y, Fx)}{d(x, y)} + \frac{\gamma \frac{d(x, Fx)d(y, Gy)}{d(x, y)}}{d(x, y)} + \frac{\delta[d(Gy, x) + \delta[d(Gy, x) + (Fx, y)]}{(Fx, y)]}$$

for all $x, y \in X$ s. t. $x \neq y$, $d(x, y) \neq 0$ where $\alpha, \beta, \gamma, \delta$ are non negative reals with $\alpha + \beta + 2\gamma + 2\delta < 1$ or d(Fx, Gy) = 0 If d(x, y) = 0. Then F & G have a unique common fixed points.

Proof: Let x_0 be on a arbitrary point in X and define $x_{2k+1} = F x_{2k}$;

$$\begin{split} x_{2k+2} &= Gx_{2k+1} \text{ where } k = 0, 1, 2, 3 \dots \text{ Then} \\ d(x_{2k+1}, x_{2k+2}) &= d(Fx_{2k}, Gx_{2k+1}) \\ &\leq \alpha d(x_{2k}, x_{2k+1}) \\ &\quad d(x_{2k}, Fx_{2k}) d(x_{2k}, Gx_{2k+1}) + d(x_{2k+1}, Gx_{2k+1}) d \\ &\quad + \beta \frac{(x_{2k}, Fx_{2k}) d(x_{2k+1}, Fx_{2k})}{d(x_{2k}, x_{2k+1})} \\ &\quad + \gamma \frac{d(x_{2k}, Fx_{2k}) d(x_{2k+1}, Gx_{2k+1})}{d(x_{2k}, x_{2k+1})} \\ &\quad + \delta [d(Gx_{2k+1}, x_{2k}) + (Fx_{2k}, x_{2k+1})] \\ d(x_{2k+1}, x_{2k+2}) &\leq \alpha d(x_{2k}, x_{2k+1}) + \\ \beta \frac{d(x_{2k}, x_{2k+1}) + d(x_{2k}, x_{2k+1})}{d(x_{2k}, x_{2k+1})} + \\ \gamma \frac{d(x_{2k}, x_{2k+1}) d(x_{2k+1}, x_{2k+2}) + d(x_{2k+1}, x_{2k+2}) d(x_{2k+1}, x_{2k+2})}{d(x_{2k}, x_{2k+1})} \\ &= \alpha d(x_{2k}, x_{2k+1}) + \beta d(x_{2k}, x_{2k+2}) + \gamma d(x_{2k+1}, x_{2k+2}) + \\ \delta d(x_{2k+2}, x_{2k}) \\ &= (\alpha + \beta + \delta) d(x_{2k}, x_{2k+1}) + (\beta + \gamma + \delta) d(x_{2k+1}, x_{2k+2}) \\ d(x_{2k+1}, x_{2k+2}) &\leq \frac{(\alpha + \beta + \delta)}{1 - (\beta + \gamma + \delta)} d(x_{2k}, x_{2k+1}) \end{split}$$

So that

$$d(x_{2k+1}, x_{2k+2}) \Big| \leq \frac{(\alpha + \beta + \delta)}{1 - (\beta + \gamma + \delta)} \Big| d(x_{2k}, x_{2k+1}) \Big|$$

As by triangle inequality

$$d(x_{2k+1}, x_{2k+2}) \Big| \leq \Big| d(x_{2k+1}, x_{2k}) \Big| + d(x_{2k}, x_{2k+2}) \Big|$$

similarly :

$$d(x_{2k+3}, x_{2k+2}) = d(Fx_{2k+2}, Gx_{2k+1})$$

 $(x_{2k+2}, x_{2k+1}) +$ α $\beta \frac{d(x_{2k+2}, Fx_{2k+2})d(x_{2k+2}, Gx_{2k+1}) + d(x_{2k+1}, Gx_{2k+1})d(x_{2k+1}, Fx_{2k+2})}{4} + \beta \frac{d(x_{2k+2}, Fx_{2k+2})d(x_{2k+2}, Gx_{2k+1}) + d(x_{2k+1}, Gx_{2k+1})d(x_{2k+1}, Fx_{2k+2})}{4} + \beta \frac{d(x_{2k+2}, Fx_{2k+2})d(x_{2k+2}, Gx_{2k+1}) + d(x_{2k+1}, Gx_{2k+1})d(x_{2k+1}, Fx_{2k+2})}{4} + \beta \frac{d(x_{2k+2}, Fx_{2k+2})d(x_{2k+2}, Gx_{2k+1}) + d(x_{2k+1}, Gx_{2k+1})d(x_{2k+1}, Fx_{2k+2})}{4} + \beta \frac{d(x_{2k+2}, Fx_{2k+2})d(x_{2k+1}, Gx_{2k+1})d(x_{2k+1}, Fx_{2k+2})}{4} + \beta \frac{d(x_{2k+2}, Fx_{2k+2})d(x_{2k+1}, Fx_{2k+2})}{4} + \beta \frac{d(x_{2k+2}, Fx_{2k+2})}{4} + \beta \frac{d(x_{2k+2}, Fx_{2k+2})d(x_{2k+2}, Fx_{2k+2})}{4} + \beta \frac{d(x_{2k+2}, Fx_{2k+2})}{4} + \beta \frac{d(x_{2k+2}, Fx_{2k+2})d(x_{2k+2}, Fx_{2k+2})}{4} + \beta \frac{d(x_{2k+2}, Fx_$ $d(x_{2k+2}, x_{2k+1})$ $\gamma \frac{d(x_{2k+2}, Fx_{2k+2})d(x_{2k+1}, Gx_{2k+1})}{d(x_{2k+1}, Gx_{2k+1})} + \delta[+d(Gx_{2k+1}, x_{2k+2}) +$ $d(x_{2k+2}, x_{2k+1})$ $(Fx_{2k+2}, x_{2k+1})]$

$$= ad(x_{2k+2}, x_{2k+1}) + \beta \frac{d(x_{2k+2}, x_{2k+3})d(x_{2k+2}, x_{2k+2}) + d(x_{2k+1}, x_{2k+2})d(x_{2k+1}, x_{2k+3})}{d(x_{2k+2}, x_{2k+1})} + \gamma \frac{d(x_{2k+2}, x_{2k+3})d(x_{2k+1}, x_{2k+2})}{d(x_{2k+2}, x_{2k+1})} + \delta[+d(x_{2k+2}, x_{2k+2}) + (x_{2k+2}, x_{2k+1})] d(x_{2k+3}, x_{2k+2}) \le (\alpha + \beta + \delta)d(x_{2k+2}, x_{2k+1}) + (\beta + \gamma)d(x_{2k+2}, x_{2k+3}) d(x_{2k+3}, x_{2k+2}) \le \frac{(\alpha + \beta + \delta)}{1 - (\beta + \gamma)} (d(x_{2k+2}, x_{2k+1})) \\$$
so that $| d(x_{2k+3}, x_{2k+2}) | \le \frac{(\alpha + \beta + \delta)}{1 - (\beta + \gamma)} | (d(x_{2k+2}, x_{2k+1}))$

As by triangle inequality

$$\begin{vmatrix} d(x_{2k+2}, x_{2k+3}) &\leq | d(x_{2k+2}, x_{2k+1}) | + \\ | d(x_{2k+1}, x_{2k+3}) \\ \text{so that} &| d(x_{2k+3}, x_{2k+2}) &\leq s | (d(x_{2k+2}, x_{2k+1}) \text{ where} \\ s &= \frac{(\alpha + \beta + \delta)}{1 - (\beta + \gamma)} < 1 \end{aligned}$$

$$\begin{vmatrix} d(x_{n+1}, x_{n+2}) &\leq s & d(x_n, x_{n+1}) \\ so that \\ for any \\ m > n \\ As by triangle inequality \\ \end{vmatrix}$$

This implies that $\{x_n\}$ is a cauchy sequence in X. Since X is complete, there exists some $v \in X$ such that $s_n \to v$ as $n \to \infty$.

suppose on the contrary that $v \neq Fv$, so that d(v, Fv) = Z > 0.

Now
$$d(v, Fv) = Z \le d(v, x_{2k+2}) + d(x_{2k+2}, Fv)$$

 $\le d(v, x_{2k+2}) + d(Gx_{2k+1}, Fv)$
 $\le d(v, x_{2k+2}) + ad(v, x_{2k+1}) + \beta \frac{d(v, Fv)d(v, Gx_{2k+1}) + d(x_{2k+1}, Gx_{2k+1})d(x_{2k+1}, Fv)}{d(v, x_{2k+1})} + \beta \frac{d(v, Fv)d(v, Gx_{2k+1}) + d(x_{2k+1}, Gx_{2k+1})d(x_{2k+1}, Fv)}{d(v, x_{2k+1})} + \beta \frac{d(v, Fv)d(v, Gx_{2k+1}) + d(x_{2k+1}, Fv)}{d(v, x_{2k+1})} + \beta \frac{d(v, Fv)d(v, Gx_{2k+1}) + d(x_{2k+1}, Fv)}{d(v, x_{2k+1})} + \beta \frac{d(v, Fv)d(v, Gx_{2k+1}) + d(x_{2k+1}, Fv)}{d(v, x_{2k+1})} + \beta \frac{d(v, Fv)d(v, Gx_{2k+1}) + d(x_{2k+1}, Fv)}{d(v, x_{2k+1})} + \beta \frac{d(v, Fv)d(v, Gx_{2k+1}) + d(x_{2k+1}, Fv)}{d(v, x_{2k+1})} + \beta \frac{d(v, Fv)d(v, Gx_{2k+1}) + d(x_{2k+1}, Fv)}{d(v, x_{2k+1})} + \beta \frac{d(v, Fv)d(v, Gx_{2k+1}) + d(x_{2k+1}, Fv)}{d(v, x_{2k+1})} + \beta \frac{d(v, Fv)d(v, Gx_{2k+1}) + d(x_{2k+1}, Fv)}{d(v, x_{2k+1})} + \beta \frac{d(v, Fv)d(v, Gx_{2k+1}) + d(x_{2k+1}, Fv)}{d(v, x_{2k+1})} + \beta \frac{d(v, Fv)d(v, Gx_{2k+1}) + d(x_{2k+1}, Fv)}{d(v, x_{2k+1})} + \beta \frac{d(v, Fv)d(v, Fv)}{d(v, Fv)} + \beta \frac$

$$\gamma \frac{d(v, x_{2k+1})}{d(v, Fv)d(x_{2k+1}, Gx_{2k+1})} + \delta[d(Gx_{2k+1}, v) + (Fv, x_{2k+1})]$$

 $\begin{aligned} &d(v, x_{2k+2}) + \alpha d(v, x_{2k+1}) + \\ &\beta \frac{Zd(v, x_{2k+2}) + d(x_{2k+1}, x_{2k+2})d(x_{2k+1}, Fv)}{d(v, x_{2k+1})} + \gamma \frac{Zd(x_{2k+1}, x_{2k+2})}{d(v, x_{2k+1})} + \\ &\delta [d(x_{2k+2}, v) + (Fv, x_{2k+1})] \end{aligned}$

so that

$$\begin{vmatrix} d(v, Fv) &= | Z | \leq | d(v, x_{2k+2}) | + \\ \alpha & | d(v, x_{2k+1}) | + \\ \beta & \frac{| Z | | d(v, x_{2k+2}) | + | d(x_{2k+1}, x_{2k+2}) | | d(x_{2k+1}, Fv) |}{| d(v, x_{2k+1}) |} \\ \gamma & \frac{| Z | | d(x_{2k+1}, x_{2k+2}) |}{| d(v, x_{2k+1}) |} + \delta \left[| d(x_{2k+2}, v) | + \\ | d(Fv, x_{2k+1}) | \right] \\ \text{which on mapping } n \to \infty$$

Therefore

$$d(v, Fv) = 0$$

which is contradiction so that v = Fv

similarly we show that v = Gv

Thus implies that v is fixed point

Uniqueness:

Let w in X be another common fixed point of F & G. Then

$$d(v,w) = d(Fv,Fw)$$

$$\leq \alpha d(v,w) + \beta \frac{d(v,Fv)d(v,Gw) + d(w,Gw)d(w,Fv)}{d(v,w)}$$

$$+ \gamma \frac{d(v,Fv)d(w,Gw)}{d(v,w)} + \delta[d(Gw,v) + (Fv,w)]$$

$$= \alpha d(v,w) + \beta d(w,Gw) + \delta [d(Gw,v) + d(v,w)]$$

$$d(v,w) \leq (\alpha + 2\delta)d(v,w)$$

 $\begin{vmatrix} d(v,w) \end{vmatrix} \le (\rho)d(v,w)$ where $\rho = \alpha + 2\delta < 1$ so v = w, which proves the uniqueness of common fixed point.

4. CONCLUSION

In this paper, we have established common fixed point result for Jaggi Type & Chatterjee Type contractive mapping in the context of complex valued metric space.

5. ACKNOWLEDGEMENTS

I express my whole hearted thanks to Dr. Abha Tenguriya Professor and Dr. R.S. Chandel Professor for her valuable guidance constant encouragement.

REFERENCES

- [1] Banach, S. Surles Operation dans les ensembles abstraits et, leur application aux equation integrals, fund math, 3 (1922), 133-181.
- [2] Azam, A., B. Fisher, B. and Khan, M. "Common Fixed Numerical Functional Analysis and optimization." Vol. 32, No. 3, PP 243-253, 2011.
- [3] Verma, R. K. and Pathak H. K.. "Common Fixed Point Theorems using properly (E. A.,) in complex valued metric space." Thai Journal of Mathematics.
- [4] Sintunavart, W., Cho, Y. J. and Kumam, P. "Urysohn integral equations approach by common fixed point in complex valued metric space." Advances in Difference Equation, Vol. 2013 Article 49, 2013.
- [5] Solanki M. & Bohre A., " common fixed point theorem in complex valued metric space ", Mathematical Science International Research Journal, vol. – 3, issue -2,(2014),655-657
- [6] Chandok, S. "Common fixed points, invariant approximation and generalized weak contractions." "International Journal of Mathematics and Mathematical Science, Vol. 2012, Article ID 102980." Pages 2012.
- [7] Chandok, S. "Some Common Fixed Point Theorems for Generalized nonlinear contractive mappings." Computers & Mathematics with Application Vol. 62, No. 10 PP 3692-3699, 2011.

- [8] Sessa, S. "On a Weak Commutatively Condition of Mappins in Fixed Point Considerations." Institute Mathematique Publications Vol. 32, No. 46, PP 149-153, 1982.
- [9] Nashine, H. K. ; Imdad, M. ; Hasan, M. "Common Fixed Point Theorems Under Rational Contractions in Complex Valued Metric Spaces" "Journal of Nonlinear Science and Applications" 7 (2014), 42-50.
- [10] Chandok S.; Khan, M. S.; and Rao, K. P. R. "Some Coupled Common Fixed Point Theorems for a Point of Mappings Satisfying a Contractive Condition of Rational Type Without Monotonicity." "International Journal of Mathematical Analysis" Vol. 7, No. 9-12, PP 433-440, 2013.
- [11] Jung, K. G. "Compatible Mapping and Common Fixed Points." International Journal of Mathematics and Mathematical Science, Vol. 9, No. 4, PP 771-779, 1986.
- [12] Rouzkand, F.; Imdad, M. "Some Common Fixed Point Theorem on Complex Valued Metric Space Comp. Math Applls" 64 (2012), 1866-1874.
- [13] Sintunavarat, W., Kumman, P. "Generalized Common Fixed Point Theorems in Complex Valued Metric Space and Applications." J. Inequalities Appl. 2012(11 Page).
- [14] Manoj solanki .A. Bohre, Ramakant Bhardwaj, "Some common fixed point theorem under rational expression in cone metric space", APCMET-2014 conference proceedings,organized by Krishi Sanskritiheld on 19-20 april 2014 at JNU New Delhi,p 218-227.